Abstract:
In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area.
Zhu Z, Chen T, Wu Y, et al. Microfluidic strategies for engineering oxygen-releasing biomaterials. Acta Biomaterialia. 2024;179:61-82. doi:10.1016/j.actbio.2024.03.032