Abstract: A capillary co-flow focusing process is developed to generate stimuli-responsive microbubbles (SRMs) that comprise perfluorocarbon (PFC) suspension of silver nanoparticles (SNPs) in a lipid shell. Upon continuous laser irradiation at around their surface plasmon resonance band, the SNPs effectively absorb electromagnetic energy, induce heat accumulation in SRMs, trigger PFC vaporization, and eventually lead to thermal expansion and fragmentation of the SRMs. This optical droplet vaporization (ODV) process is further simulated by a theoretical model that combines heat generation of SNPs, phase change of PFC, and thermal expansion of SRMs. The model is validated by benchtop experiments, where the ODV process is monitored by microscopic imaging. The effects of primary process parameters on behaviors of ODV are predicted by the theoretical model, indicating the technical feasibility for process control and optimization in future drug delivery applications.
Si T, Li G, Wu Q, Zhu Z, Luo X, Xu RX. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles. Applied Physics Letters. 2016;108(11)doi:10.1063/1.4944539